skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chaudhary, Vini"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile Robots (MRs), typically equipped with single-antenna radios, face many challenges in maintaining reliable connectivity established by multiple wireless access points (APs). These challenges include the absence of direct line-of-sight (LoS), ineffective beam searching due to the time-varying channel, and interference constraints. This paper presents REMARKABLE, an online learning based adaptive beam selection strategy for robot connectivity that trains kernelized bandit model directly in real-world settings of a factory floor. REMARKABLE employs reconfigurable intelligent surfaces (RISs) with passive reflective elements to create beamforming toward target robots, eliminating the need for multiple APs. We develop a method to create a beamforming codebook, reducing the search space complexity. We also develop a reconfigurable rotational mechanism to expand RIS coverage by rotating its projection plane. To address non-stationary conditions, we adopt the bandit over bandit idea that employs adaptive restarts, allowing the system to forget outdated observations and safely relearn the optimal interference-constrained beam. We show that our approach achieves a dynamic regret and the violation bound of Õ(T^(3/4)B^(1/4)) where T is the total time, and B is the total variation budget which captures the total changes in the environment without even assuming the knowledge of B. Finally, experimental validation with custom-designed RIS hardware and mobile robots demonstrates 46.8% faster beam selection and 94.2% accuracy, outperforming classical methods across diverse mobility settings. 
    more » « less
    Free, publicly-accessible full text available October 23, 2026